Headquarters U.S. Air Force

Integrity - Service - Excellence

In Situ Oxidation

Results from Multiple DoD Sites

Dr. Marvin Unger ESTCP/RETEC 6 March 2002

Technology Status: In Situ Oxidation

- Hans Stroo/RETEC
- Marvin Unger/RETEC
- Joe Gormley/RETEC
- Ray Arguello/Blue Chip Engineering

www.estcp.org/technical_documents

Background

- Rapid Adoption of ISO for NAPL Sites
- Low-Cost, Rapid Source Destruction
- C=C and C-C Bonds Attacked
- H₂O₂, KMnO₄, and O₃ Used
- Mixed Results From Applications

Chemistry

$$\blacksquare 3H_2O_2 + C_2HCI_3$$

$$\blacksquare$$
 Fe²⁺ + H₂O₂

$$\longrightarrow$$
 2CO₂ + 2H₂O + H⁺ + Cl⁻

$$\rightarrow$$
 Fe³⁺ + OH⁻ (Acidic)

$$2MnO_4 + C_2HCl_3$$

$$\blacksquare$$
 MnO₄- (Liquid)

$$\longrightarrow$$
 2CO₂ + 2MnO₂ + 3Cl⁻ + H⁺

$$\longrightarrow$$
 MnO₂ (solid)

Engineering Issues

- Delivery Systems
- Mixing Enhancements
- Efficiency of Oxidant Use
- Targeting Source Areas

Delivery Methods

Liquid Oxidant Injection

Gaseous Oxidant Injection

Delivery Methods

Lance Permeation

Deep Soil Mixing

Delivery Methods

Recirculation/Flushing

Treatment Fence

Arthur Canon Doyle The Adventure of the Copper Beeches 1892

"What is the meaning of it all, Mr. Holmes?" "Ah. I have no data. I cannot tell", he said.

Oxidants: Key Features

Influencing Factors

 H_2O_2

KMnO₄

 O_3

рН	Prefer pH 2-4, feasible to near neutral.	Prefer pH 7-8, effective over wide range.	Effective at natural soil pH.
NOM/Reduc ed Species	Any reduced species exert a demand for oxidant, especially natural organic matter (NOM) and reduced inorganics.		
Oxidant Degradation	31 9 3		Ozone degradation in soil is limited.

Technology Concerns

Explosion Prevention

- Insufficient Mixing and Contact
- Rebound in Groundwater Concentrations
- Recalcitrance of Some VOCs
- Potential for Volatile Emissions of VOCs
- Plugging and Short-Circuiting
- Little Design and Operating Guidance

Objectives

- Establish Selection and Design Basis
- Determine Cost and Performance
- Evaluate Reasons for Success or Failure
- Provide Initial Guidance For ISO Use

Approach

- Phase 1: Survey Sites
 - Treatment Approach
 - Ability to Meet Objectives
- Phase 2: Site Profiles
 - Site Characteristics
 - Design Basis and Rationale
 - Cost and Performance
 - Technical Concerns/Problems

Cost Factors

- Depth and Thickness
- Contaminant Type and Mass

- Other Oxidizable Compounds
- Well Spacing
- Mixing Enhancements
- Number of Injections
- Need for pH Adjustment

Performance Summaries: Unsaturated Soils

Site	Loss	Concerns
1	90%	Several areas > soil cleanup levels
2	70%	Injection screen placement not optimal Spatial variability complicated analysis
3	67%	VOC off-gassing during deep soil mixing Low permeability soils limited KMnO ₄ penetration into soils
4	77%	VOC off-gassing

Performance Summaries: Saturated Soils

Site	Loss	Concerns
5	-	Explosion terminated project
6	97%	Rebound observed; Active treatment stopped
7	99%	New hot spots discovered
9	?	Rebound; Equipment failure
10	95%	Rebound; Short-circuiting
11	<5 ppb	Some dead zones with DNAPL remained
12	94%	Rebound; VOC stripping; Remnant DNAPL
13	50%	Rebound; VOC stripping; High oxidant demand

Cost Estimates

Site	Cost/lbVOC	Scale	
4	\$190	Full	
6	\$375	Full	
12	\$900	Pilot	
13	\$8,700	Pilot	

Potential Detrimental Effects

- Particulates can be generated and permeability loss is possible.
- Gas evolution with peroxide and ozone.
- Generation of fugitive emissions.
- Potentially toxic byproducts.
- Reduction of biomass.

Lessons Learned

- Site Characterization
 - Total Oxidant Demand
 - Contaminant Delineation
 - Mass Estimates
 - Vapor Monitoring

Lessons Learned

- Design Issues
 - Radius of Influence
 - Oxidant Concentration
 - Enhance Mixing

Lessons Learned

- Operational Issues
 - Multiple Injections
 - Vapor Monitoring
 - Monitor for Rebound

Research & Implementation Needs

- Better DNAPL Site Characterization
 - Stratigraphic Information and DNAPL Detection
- Better Definitions of Success
 - Goals and Measurement Parameters
- Better Design Basis and Models
 - Radius of Influence/Oxidant Efficiency/Mixing
- Better Transport and Mixing
- Better Understanding of Loss Mechanisms
 - Oxidation/Dilution/Volatilization

Case Study: Irvine, CA

- Chlorinated solvents (PCE, TCE) in perched ground water (12-16 feet bgs)
- Silty Materials (10⁻⁵ cm/sec)
- Active remediation (vapor extraction + pump and treat)
- Total Fluids Extraction Proposed
- "Well-Characterized" Source and Plume

In Situ Oxidation Goals

- Stop Active Remediation
- Achieve Closure/Natural Attenuation
- Prevent Total Fluids Extraction
- Remove Source to Extent Practicable

Approach

- 4 Injections of 5% KMnO₄ at 2-Month Intervals: Injection Wells and Geoprobe
- Adjust Locations Based on Monitoring
- Injected 2500 Lbs Total for Estimated 50 Lb CVOCs
- Pressure = 100-150 psig; Rate = 2 gpm
- ROI = 10' (design), 25-30' (actual)

Findings

- Source Larger and More Complex than Investigation Indicated
 - Higher concentrations
 - New contaminants (MC, Not oxidized)
- Permanganate Lasted 2-4 Months
 - Rebounds after every injection
- Significant Plugging After First Injections
- Project Goals Achieved
- Cost << Total Fluids Extraction</p>
 - \$80/cu. yd / \$375/lb CVOC treated